12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455 |
- from django.conf import settings
- from requests import post
- import json
- nlu_server_url = settings.NLU_SERVER_URI
- def model_inference(text):
- url = nlu_server_url + '/model/parse'
- payload = {'text': text}
- headers = {'content-type': 'application/json'}
- response = post(url, data=json.dumps(payload), headers=headers)
- if response.status_code == 200:
- return response.json()
- return response
- def is_a_name(name):
- '''
- function that decide whether it is a person name or not
- :param -> a string usually reviewer name:
- :return -> a boolean True/False:
- '''
- response = model_inference(name.title())
- entities = response.get('entities')
- if not entities:
- return False
- entity = entities[0]
- if entity.get('entity') == 'PERSON':
- return True
- else:
- return False
- def analyze_inference(response):
- '''
- response has four property
- ['intent', 'entities', 'intent_ranking', 'text']
- we took all intents that has more than 10% of intent confident.
- all the intents that has bellow confidence has been omitted.
- :param response:
- :return: dictionary with key of intent and value of it's confident.
- '''
- res_intents = response.get('intent_ranking')
- intents = {}
- for intent in res_intents:
- key = intent.get('name')
- values = intent.get('confidence')
- if values > 0.1:
- intents[key] = int(values*100)
- return intents
|