from django.conf import settings from requests import post import json from difflib import SequenceMatcher from review.models import Review nlu_server_url = settings.NLU_SERVER_URI ner_model = settings.MODEL def filter_with_last_ten_reviews(location_id, replies): replies = list(replies) revs = Review.objects.filter(location_id=location_id).exclude(reply=None).order_by('-update_time')[:10] for r in revs: s1 = r.reply.replied_text for rep in replies: s2 = rep.reply similarity = SequenceMatcher(None, s1, s2).ratio() if similarity > 0.7: replies.remove(rep) print('%.2f'%similarity, ' -------------- ', rep.reply_category) return replies def model_inference(text): url = nlu_server_url + '/model/parse' payload = {'text': text} headers = {'content-type': 'application/json'} response = post(url, data=json.dumps(payload), headers=headers) if response.status_code == 200: return response.json() return response def is_a_name(name): ''' function that decide whether it is a person name or not :param -> a string usually reviewer name: :return -> a boolean True/False: ''' response = model_inference(name.title()) entities = response.get('entities') if not entities: return False entity = entities[0] if entity.get('entity') == 'PERSON': return True else: return False def analyze_inference(response): ''' response has four property ['intent', 'entities', 'intent_ranking', 'text'] we took all intents that has more than 10% of intent confident. all the intents that has bellow confidence has been omitted. :param response: JSON -> a json response that RASA NLU server respond. :return: DICT ->dictionary with key of intent and value of it's confident. ''' res_intents = response.get('intent_ranking') intents = {} for intent in res_intents: key = intent.get('name') values = intent.get('confidence') if values > 0.1: intents[key] = int(values*100) return intents def name_entity_recognition(text): doc = ner_model(text) names = [n for n in doc.ents if n.label_ == 'PERSON'] return names